
CloudIAM - Implementation - Quick setup guide - marketplace

Pre-requirements

Step 1 - Build required AMIs
Step 1.1 Build Bastions AMI

Step 1.2 Build Graphical AMI

Step 1.3 Build Guacamole Gateway AMI

Step 2 - Enabling cross-account access

Step 3 - Setting up R53 and ECR repositories

Step 4 - Terraform deployment

Appendix
AWS Resources Naming Convention and Limitations

Tagging

Pre-requirements
Before starting implementation, you need first:

1. AWS CLI installed on local machine. [INSTRUCTION HERE]

2. AWS Account with Administrator access for CloudIAM product deployment + AWS profile configured on local machine. [INSTRUCTION HERE]

3. The same AWS Account needs at least one AWS VPC + Subnet - needed to build and upload AMI.

4. At least one resource from AWS(EC2/EKS/RDS) is/are available on another AWS account with another VPC - we will be connecting to it from CloudIAM Application as a

“Resource”.

5. Download infra-cloudiam.zip file from the Amazon Marketplace product version template and extract it to a separate folder. This will be our ROOT_DIR reference path.

6. Downloaded ECR Images subscribed from Marketplace. Please follow strictly Marketplace instructions to launch images.

7. Please make sure that on local machine are installed:

a. Python 3.11 or newer,

b. Terraform 1.9.0 or newer,

c. Hashicorp Packer

8. Prepared S3 Bucket (for Terraform State) and DynamoDB Table with LockID as a Partition Key(for Terraform Locks). We will use those S3 Bucket and DynamoDB table in

already prepared terraform solution. [INSTRUCTION HERE]

Step 1 - Build required AMIs

1. Open extracted “infra-cloudiam.zip” folder as new workspace with editor of choice (for example Visual Studio Code).

2. Open new terminal window in extracted folder.

3. Create and activate new python3 virtual environment

4. Install required ansible packages:

5. Install WinRm package:

Step 1.1 Build Bastions AMI

1. Navigate to the bastion directory: cd prereqs/02_images_preparation/bastion_ami

2. Copy content of packer / variables.sample.pkrvars.hcl file to. packer / variables.auto.pkrvars.hcl and change all “SET_ME” values to the ones you desire.

3. Also change values of keys:

a. “vpc_name”,

b. “subnet_name”,

c. “profile_name”,

at the end of the file (VPC, subnet and profile name should be the ones prepared from requirements, that are in AWS account where CloudIAM application will be

deployed).

Example modified content

Please remember to start working on root directory (top level after unpacking infra-cloudiam.zip)

1 python3 -m venv ~/ansible-env

2 source ~/ansible-env/bin/activate

1 pip install ansible

2 ansible-galaxy collection install community.windows

1 pip install ansible pywinrm

1 mv packer/variables.sample.pkrvars.hcl packer/variables.auto.pkrvars.hcl

2 nano packer/variables.auto.pkrvars.hcl

1 env = "prd"

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/v1/userguide/cli-configure-files.html
https://www.python.org/downloads/
https://developer.hashicorp.com/terraform/install?product_intent=terraform
https://developer.hashicorp.com/packer/install
https://developer.hashicorp.com/terraform/language/backend/s3

4. Build Bastion AMI(variables will be injected automatically from variables.auto.pkrvars.hcl) :

5. Copy and save Packer build output (need for STEP 4). Example:

Step 1.2 Build Graphical AMI

1. Navigate to the graphical directory: cd prereqs/02_images_preparation/graphical_ami

2. Rename folder aws-profile-name with the name of AWS profile where CloudIAM will be deployed (see Pre-Requirements#2). Example:

3. Choose one of json files in parameters/aws-profile-name folder and modify it -

change all “SET ME” values to the desired ones (vpc_id , subnet_id and aws_profile should be the ones prepared from requirements). Example modified content for

windows-server-2022-base-english.json :

Example modified content

2 client = "demo"

3

4 default_tags = {

5 application = "CloudIAM"

6 cost_center_code = "CloudIAM"

7 creator = "john.kovalsky@example.com"

8 owner = "john.kovalsky@example.com"

9 environment = "prd"

10 managed_by = "packer"

11 }

12

13 amazon_linux_2023 = {

14 path_to_ansible_playbook = "./ansible/ansible_playbook.yml"

15 region = "eu-west-1"

16 instance_type = "t2.micro"

17 ssh_username = "ec2-user"

18 host_name = "amazon_linux_2023"

19 image_name = "cloudiam-bastion-amazon-linux-2023"

20 version = "1.1.0"

21 associate_public_ip = true

22 skip_ami_creation = false

23 source_ami_config = {

24 name = "al2023-ami-2023.*-kernel-6.1-x86_64"

25 virtualization_type = "hvm"

26 root_device_type = "ebs"

27 architecture = "x86_64"

28 owners = ["amazon"]

29 most_recent = true

30 }

31 # vpc where instance for ami creation should be launched

32 vpc_name = "cloudiam-app-prd_vpc"

33 # subnet where instance for ami creation should be launched

34 subnet_name = "cloudiam-app-prd_pub_sub_eu-west-1a"

35 # AWS Profile Name

36 profile_name = "a-demo-prd"

37 }

1 cd packer/

2 packer init .

3 packer build .

MacOS sometimes raises a problem with threads, to prevent it we need to run the command before packer build: export OBJC_DISABLE_INITIALIZE_FORK_SAFETY=YES

Because of the problems with python and winrm on MacOS, you should also set the environment variable: export no_proxy="*"

1 ==> Builds finished. The artifacts of successful builds are:

2 --> linux.amazon-ebs.linux: AMIs were created:

3 eu-west-1: ami-0d1cd417d0429aa1a

Please remember to start working on root directory (top level after unpacking infra-cloudiam.zip)

1 mv parameters/aws-profile-name parameters/a-demo-prd

1 {

2 "building": {

3 "image_name": "cloudiam-vdi-windows-server-2022-base-english",

4 "source_image_name": "Windows_Server-2022-English-Full-Base-2024.10.09",

5 "instance_type": "c5.2xlarge",

6 "profile_name": "a-demo-prd",

7 "region": "eu-west-1"

8 },

9 "network": {

10 "vpc_id": "vpc-0a1234bc56789000d",

11 "subnet_id": "subnet-0e5f67g8h901ijk23",

12 "associate_public_ip_address": true

13 },

14 "default_tags": {

4. Build Graphical AMI image:

5. Copy and save packer build output (we will need it in STEP 4). Example:

Step 1.3 Build Guacamole Gateway AMI

1. Navigate to the directory: cd prereqs/02_images_preparation/guacamole_gateway_ami

2. Rename folder aws-profile-name with the name of AWS profile where CloudIAM will be deployed (see Pre-Requirments#2.

3. Modify content of prereqs/02_images_preparation/guacamole_gateway_ami/parameters/amazon-linux-2023.json file - change all “SET ME” values to the desired ones

(vpc_id , subnet_id and aws_profile should be the ones prepared from requirements). Example modified content for amazon-linux-2023.json :

Example modified content

4. Build Guacamole Gateway AMI image:

5. Copy and save packer build output (we will need it in STEP 4). You can mark it in your notes as ““. Example:

15 "application": "CloudIAM",

16 "cost_center_code": "CloudIAM",

17 "creator": "john.kovalsky@example.com",

18 "owner": "john.kovalsky@example.com",

19 "environment": "prd",

20 "managed_by": "packer"

21 }

22 }

JSON file in name contain *-english.json or *-polish.json. It reflects to the operating system Language Pack used for Windows Image.

1 packer init .

2 packer build --var-file "./parameters/<aws-profile-name>/windows-server-2022-base-english.json" .

Please take a note that building of Windows AMI can take a while …

1 ==> Builds finished. The artifacts of successful builds are:

2 --> linux.amazon-ebs.linux: AMIs were created:

3 eu-west-1: ami-0d1cd417d0429aa1a

Please remember to start working on root directory (top level after unpacking infra-cloudiam.zip

1 mv parameters/aws-profile-name parameters/a-demo-prd

1 {

2 "building": {

3 "image_name": "cloudiam-vdi-guacamole-gw",

4 "source_image_name": "al2023-ami-2023.6.20241121.0-kernel-6.1-x86_64",

5 "instance_type": "t3.large",

6 "profile_name": "a-demo-prd",

7 "region": "eu-west-1"

8 },

9 "network": {

10 "vpc_id": "vpc-0a1234bc56789000d",

11 "subnet_id": "subnet-0e5f67g8h901ijk23",

12 "associate_public_ip_address": true

13 },

14 "default_tags": {

15 "application": "CloudIAM",

16 "cost_center_code": "CloudIAM",

17 "creator": "john.kovalsky@example.com",

18 "owner": "john.kovalsky@example.com",

19 "environment": "prd",

20 "managed_by": "packer"

21 }

22 }

1 packer init .

2 packer build --var-file "./parameters/<aws-profile-name>/amazon-linux-2023.json" .

This product includes Apache Guacamole, an open-source software licensed under the Apache License 2.0.

Guacamole's license can be found at:

https://www.apache.org/licenses/LICENSE-2.0

For more information about Apache Guacamole, visit: https://guacamole.apache.org

Please take a note that building of Windows AMI can take a while.

1 ==> Builds finished. The artifacts of successful builds are:

2 --> linux.amazon-ebs.linux: AMIs were created:

3 eu-west-1: ami-0d1cd417d0429aa1a

https://www.apache.org/licenses/LICENSE-2.0
https://guacamole.apache.org/

Step 2 - Enabling cross-account access

1. Navigate to the directory: cd prereqs/00_cf_cross_account_roles

2. Install python packages from requirements.txt . Make sure you have already installed and activated Python Env(see PreRequirements#7)

3. Fill the configuration in config.sample.yml (you can rename this file if needed). If renamed, please remember to adjust command in point 4:

Example modified content

4. Deploy cross account roles by running python file:

5. From script output copy and save last part that we will use in terraform configuration in next steps. Example output to copy:

Step 3 - Setting up R53 and ECR repositories

ECR repositories are needed to store CloudIAM images, which will be delivered with the Marketplace product. It’s necessary to prepare 3 ECR Repositories:

BE CloudIAM

FE CloudIAM

Lambdas CloudIAM

ECR creation is mandatory to store the images from the marketplace in the remote ECR.

1. Go to prereqs/01_prereqs and fill backend.tf and providers.tf configuration files. You should use there S3 bucket, DynamoDB Table and AWS profile created for this guide’s

Pre-requirements. Example:

Please remember to start working on root directory (top level after unpacking infra-cloudiam.zip

1 python3 -m venv ~/cross-account-env

2 source ~/cross-account-env/bin/activate

3 pip install -r requirements.txt

Please DO NOT MODIFY content of main.yml or target.yml files

1 main_template:

2 stack_name: "prereq-stack-main"

3 main_role_name: "main-cloudiam-execution-role"

4 target_role_name: "target-cloudiam-execution-role"

5 path_to_file: ./main.yml

6 target_template:

7 stack_name: "prereq-stack-target"

8 target_role_name: "target-cloudiam-execution-role"

9 path_to_file: ./target.yml

10 deploy_to:

11 - account_id: 123456789012

12 profile_name: a-demo-prd

13 main: true

14 - account_id: 234567890123

15 profile_name: a-demo-prd-app1

16 - account_id: 345678901234

17 profile_name: a-demo-dev-app1

1 python3 manage.py --config-file-path ./config.sample.yml --action deploy

Valid actions:

deploy

update

destroy

1 {

2 "MainCFIAMExecutionRole": "arn:aws:iam::123456789012:role/main-cloudiam-execution-role",

3 "TargetCFIAMRoleArn": "target-cloudiam-execution-role"

4 }

Please remember to start working on root directory (top level after unpacking infra-cloudiam.zip)

1 """providers.tf"""

2

3 provider "aws" {

4 region = "eu-west-1"

5 profile = "a-demo-prd"

6 }

1 """backend.tf"""

2

3 terraform {

4 backend "s3" {

Region in providers.tf and backend.tf must be equal

2. In prereqs/01_prereqs/terraform.sample.tfvars fill ecr block values for backend_repository , frontend_repository and lambdas_repository keys and save as a

terraform.auto.tfvars . Example:

3. In prereqs/01_prereqs/terraform.auto.tfvars fill R53 block value of hosted_zone_name

4. Go to prereqs/01_prereqs and create terraform workspace, with the same name as configured AWS Profile for account where CloudIAM will be deployed. Example:

5. Apply and confirm terraform deployment:

6. Now please follow Marketplace instructions to push subscribed image to ECR Repositories:

a. BE image into BE CloudIAM

b. FE image into FE CloudIAM

c. Lambdas image into Lambdas CloudIAM

5 profile = "a-demo-prd"

6 bucket = "a-demo-prd-s3-cloudiam-tfstate"

7 key = "cloudiam-ecr-r53"

8 region = "eu-west-1"

9 dynamodb_table = "a-demo-prd-ddb-tf-state-lock"

10 }

11 }

1 ecr = {

2 create = true

3 repositories = {

4 backend_repository = "a-demo-prd-cloudiam-backend"

5 frontend_repository = "a-demo-prd-cloudiam-frontend"

6 iac_lambdas_repository = "a-demo-prd-cloudiam-iac-lambdas"

7 }

8 }

9

10 r53 = {

11 create = true

12 hosted_zone_name = "prd.examplehostedzone.com"

13 }

14

15 # idp_secret used only for advanced integration with identity providers.

16 # "create" set to false to skip it.

17 idp_secret = {

18 # Setting to false prevent resources creation

19 create = false

20 # Change only tam (for client name shortcut and dev for type of env.

21 # Make it aligned with values in main deployment vars.

22 name = "a-demo-prd-sm-idp-metadata-config"

23 recovery_window_in_days = 0

24 path_to_files = {

25 google = "./google.xml"

26 }

27 }

28

If you already have an existing public hosted zone on the main account, you must pass the hosted zone id in STEP 4 to the terraform configuration using

“hosted_zone_id“ variable and set “create” key to false in R53 block in prereqs/01_prereqs/terraform.auto.tfvars .

If the main CloudIAM account does not have any hosted zones but you have a DNS account in your organization (or another account used for domain registration that

can handle public DNS resolution), you must create a hosted zone and, if necessary, delegate name resolution to the main hosted zone in your organization by passing

the appropriate NS records.

1 terraform init

2 terraform workspace new a-demo-prd

You can list all available workspaces with command:

“*” next to workspace name points to currently selected workspace.

You can also show selected workspace with command:

1 terraform workspace list

1 terraform workspace show

1 terraform apply

You can verify resources created by terraform stack before you confirm deployment on apply action. If all resources seems to be fine, then proceed with accepting

changing, which will trigger deployment.

Step 4 - Terraform deployment

1. Copy and rename the sample folder to match the name of the configured AWS Profile for the account where CloudIAM will be deployed. Example:

2. Go to copied folder cd conf/ and modify files accounts-to-enroll.yml , group-mapping.yml and tf-params.yml . Those file defines accounts, groups and user.

Examples:

Use output from terraform apply command from previous point to get repositories names/uris necessary for pushing images from AWS Marketplace.

Please remember to start working on root directory (top level after unpacking infra-cloudiam.zip)

1 cp -R "conf/sample" "conf/a-demo-prd"

Please be aware that terraform workspace name must equal directory name in conf/ so if you type terraform workspace new a-demo-stg then modify above command to

cp -R "conf/sample" "conf/a-demo-stg"

1 """accounts-to-enroll"""

2

3 target_session_duration: 3600

4 accounts_to_enroll:

5 eu-west-1:

6 - account_aws_id: 123456789012

7 # You set your own name, but follow naming convention

8 name: a-demo-prd-eu-west-1

9 environment: prd

10 description: "CloudIAM main account (where CloudIAM is deployed) Region: eu-west-1"

11 - account_aws_id: 234567890123

12 name: a-demo-prd-app1-eu-west-1

13 environment: prd

14 description: "Prd account of app1. Region: eu-west-1"

15 - account_aws_id: 345678901234

16 name: a-demo-dev-app1-eu-west-1

17 environment: dev

18 description: "Dev account of app1. Region: eu-west-1"

19 eu-central-1:

20 - account_aws_id: 234567890123

21 name: a-demo-prd-app1-eu-central-1

22 environment: prd

23 description: "Prd account of app1. Region: eu-central-1"

If your accounts use other regions, then you can change or add other regions, apart from ones showed in example.

1 """group-mapping.yml"""

2

3 users_to_create:

4 - username: superuser

5 generate_password: true

6 email: superuser@example.com

7 - username: test

8 generate_password: true

9 email: test@example.com

10 - username: johnkovalsky

11 generate_password: true

12 email: john.kovalsky@example.com

13

14 groups_to_create:

15 COGNITO:

16 admin:

17 admin_group: true

18 description: "This is an admin group"

19 tmp_users:

20 description: "This is a tmp_users group"

21 basic_access:

22 description: "This is additional group with perms to basic applications"

23

24 attach_users_to_groups:

25 admin:

26 - superuser

27 - johnkovalsky

28 tmp_users:

29 - test

30 basic_access:

31 - johnkovalsky

32 - test

While replicating groups to cognito it’s mandatory to create ADMIN and TMP_USERS groups in group-mapping.yml file. ADMIN is a main admin group with privileged

access to the application. The Groups replication is very important step in GBAC Access Control on API side.

Users MUST belong to either admin or tmp_users group. Belonging to admin group gives access to CloudIAM application administrator panel.

In tf-params.yml we need to use data prepared from previous steps:

image_id in vdi_gateway block fill with value from STEP 1.3 (output from built guacamole_gateway_ami).

Use outputs from STEP 2 to fill fields stack_set_execution_role_arn (MainCFIAMExecutionRole from STEP 2) and target_cf_execution_role (TargetCFIAMRoleArn from

STEP 2)

ecr_repo_config block - use repositories names created in STEP 3.

allowed_alb_ips - stores IPs allowed to connect to application. Add there IP addresses of people allowed to use CloudIAM application. This attribute works only if

app_access_external is set to true , otherwise application allows connection only through VPN set up by client (VPN is not a part of application itself).

1 """tf-params.yml"""

2 # ---------- General ----------

3 env: prd

4 aws_region: eu-west-1

5 aws_profile: a-demo-prd

6 az_count: 2

7 client: demo

8 service_name: cloudiam-app

9 domain_name: # set me from pre req 01 (the same as in STEP 3)

10 route53_zone_id: # set me from pre req 01 (from STEP 3)

11

12 # ---------- TEST ---------------

13 app_access_external: true

14 allowed_alb_ips:

15 - description: "John Kovalsky"

16 ip: 88.123.123.12/32

17 - description: "Manager"

18 ip: 87.321.123.12/32

19

20

21 application:

22 name: CloudIAM

23 owner: "John Kovalsky Team"

24 creator: john.kovalsky@example.com

25 cost_center: "Devops"

26

27 # This role should be used to create stack sets and deploy on target accounts

28 stack_set_execution_role_arn: "arn:aws:iam::123456789012:role/main-cloudiam-execution-role"

29 target_cf_execution_role: "target-cloudiam-execution-role"

30

31

32 # ---------- Networking ----------

33 vpc_global_cidr_block: 10.21.0.0/16

34

35 # Rate Limiter: If waf_enable is set to true, AWS WAF will block requests originating from the same IP address

36 # after exceeding the request_limit of 6000 requests within a rolling 5-minute window.

37 # request_limit must be between 10 and 20 0000 000.

38 waf_enable: true

39 request_limit: 6000

40

41 # ---------- ECS ----------

42 ecs_task:

43 fe:

44 vcpu: 2048

45 memory: 4096

46 container_port: 80

47 min_capacity: 1

48 desired_count: 1

49 max_capacity: 5

50 be:

51 vcpu: 2048

52 memory: 4096

53 container_port: 8000

54 min_capacity: 1

55 desired_count: 1

56 max_capacity: 10

57

58 # ---------- VDI ----------

59 vdi_gateway:

60 image_id: "ami-0d1cd417d0429aa1a"

61 asg:

62 min_size: 1

63 max_size: 2

64 desired_capacity: 1

65 instance_type: t3.small

66

67 streaming_monitoring_interval_seconds: 30

3. Go to infra-cloudiam/conf/<env_name>/iac (env_name is name of the folder you set in point 2) and modify all files, according to your needs. These configuration files are

responsible for loading already existing data into CloudIAM application, for example adding EC2 resource makes it possible to use it in application and connect to it through

CloudIAM bastion.

Examples:

68

69 # ---------- ECR ----------

70 ecr_repo_config:

71 fe:

72 repository_name: "a-demo-prd-cloudiam-frontend" # <set me from prereq 01>

73 image_tag: 250210 # ex: 250210 Tag Version from subscribed Marketplace Product Image

74 be:

75 repository_name: "a-demo-prd-cloudiam-backend" # <set me from prereq 01>

76 image_tag: 250210 # ex: 250210 Tag Version from subscribed Marketplace Product Image

77 lambdas:

78 repository_name: "a-demo-prd-cloudiam-iac-lambdas" # <set me from prereq 01>

79 image_tag: 250210 # ex: 250210 Tag Version from subscribed Marketplace Product Image

80

81 disable_time_in_seconds: 60

82 max_allowed_login_attempts: 5

83

84 # ---------- AI Analysis ----------

85 feature_log_analysis: true

86 feature_log_analysis_model_region: us-east-1

87 feature_log_analysis_model_id: "anthropic.claude-3-5-sonnet-20240620-v1:0"

88 feature_log_analysis_model_name: "Claude 3.5 Sonnet"

89 feature_log_analysis_model_provider: "Anthropic"

90

1 """ami-mapping.yml"""

2

3 cloudiam-vdi-windows-server-2022-base-english-20250131123456: ami-0d1cd417d0429aa1a

4 cloudiam-bastion-amazon-linux-2023-1.1.0: ami-0d1cd417d0429aa1a

1 """application-mapping.yml"""

2

3 # Allows generating access to specified AWS account with permissions defined by policies

4 console_application_1:

5 description: First console application

6 duration: 3600

7 app_type: CONSOLE

8 policies: ["a-demo-dev-app1-admin-access"]

9 groups: ["admin"]

10 users: ["test"]

11 account: a-demo-dev-app1-eu-west-1

12

13 bastion_application_1:

14 description: First bastion application with access to account a-demo-dev-app1-eu-west-1

15 duration: 4000

16 instance_type: t3.nano

17 app_type: BASTION

18 cidrs: ["0.0.0.0/0"]

19 policies: ["a-demo-dev-app1-admin-access"]

20 groups: ["admin", "basic_access"]

21 users: []

22 account: a-demo-dev-app1-eu-west-1

23 ami: cloudiam-bastion-amazon-linux-2023-1.1.0

24 aws_resources: ["test_ec2", "test_rds", "test_eks"]

25

26 graphical_application_1:

27 description: First VDI application

28 duration: 3600

29 instance_type: t3.xlarge

30 app_type: GRAPHICAL

31 cidrs: ["0.0.0.0/0", "192.168.8.1/32"]

32 policies: ["a-demo-dev-app1-admin-access"]

33 groups: []

34 users: ["johnkovalsky"]

35 account: a-demo-dev-app1-eu-west-1

36 ami: cloudiam-vdi-windows-server-2022-base-english-20250131123456

37 aws_resources: ["test_ec2", "test_rds", "test_eks"]

38

1 """aws-policy-resources.yml"""

2 # Policies are used for granting permissions in defined applications

3

4 a-demo-prd-admin-access:

4. In main folder infra-cloudiam fill backend.tf configuration file. You should use there S3 bucket, DynamoDB Table and AWS profile created for this guide’s Pre-requirements.

Example:

5. Go to main folder infra-cloudiam and create terraform workspace, with the same name as configured AWS Profile for account where CloudIAM will be deployed. Example:

5 aws_managed: true

6 account: a-demo-prd-eu-west-1

7 description: "This is an administrator access for prd account"

8 policy_arn: arn:aws:iam::aws:policy/AdministratorAccess

9

10 a-demo-prd-app1-ddb-access:

11 aws_managed: true

12 account: a-demo-prd-app1-eu-west-1

13 description: "This is a full access to DynamoDB service"

14 policy_arn: arn:aws:iam::aws:policy/AmazonDynamoDBFullAccess

15

16 a-demo-dev-app1-admin-access:

17 aws_managed: true

18 account: a-demo-dev-app1-eu-west-1

19 description: "This is an administrator access for dev app1 account"

20 policy_arn: arn:aws:iam::aws:policy/AdministratorAccess

21

22 a-demo-prd-app1-ro-access:

23 aws_managed: true

24 account: a-demo-prd-app1-eu-west-1

25 description: "This is read only access to DynamoDB service"

26 policy_arn: arn:aws:iam::aws:policy/AmazonDynamoDBReadOnlyAccess

1 """aws-ec2-resources.yml"""

2

3 EC2:

4 test_ec2:

5 description: EC2 instance on a-demo-dev-app1-eu-west-1 account

6 additional_config:

7 security_group_ids: ["sg-0ccadd6543b123ab1"]

8 account: a-demo-dev-app1-eu-west-1

1 """aws-eks-resources.yml"""

2

3 test-eks:

4 description: eks with access to cluster a-demo-dev-app1-eks

5 additional_config:

6 security_group_ids: ["sg-0e3fcab21bb192j38", "sg-0b79d5bf51a123456"]

7 eks_access_config:

8 a-demo-dev-app1-eks:

9 AmazonEKSClusterAdminPolicy:

10 cluster: False

11 namespaces: ["default"]

12 AmazonEKSAdminViewPolicy:

13 cluster: True

14 namespaces: []

15 account: a-demo-dev-app1-eu-west-1

1 """aws-rds-resources.yml"""

2

3 test-rds:

4 description: a-demo-dev-app1 rds resource

5 additional_config:

6 security_group_ids: ["sg-042de95c4d618dj27"]

7 account: a-demo-dev-app1-eu-west-1

8

1 terraform {

2 backend "s3" {

3 profile = "a-demo-prd"

4 bucket = "a-demo-prd-s3-cloudiam-tfstate"

5 key = "cloudiam-main-app"

6 region = "eu-west-1"

7 dynamodb_table = "a-demo-prd-ddb-tf-state-lock"

8 }

9 }

6. Deploy with commands (you need to have your new workspace selected before running command):

Appendix

AWS Resources Naming Convention and Limitations

[EXPAND ME] Quotas

1 terraform init

2 terraform workspace new a-demo-prd

You can list all available workspaces with command:

“*” next to workspace name points to currently selected workspace.

You can also show selected workspace with command:

Workspaces created now are separate from workspaces made in STEP 3.

1 terraform workspace list

1 terraform workspace show

1 terraform plan

2 terraform apply

You can verify resources created by terraform stack before you confirm deployment on apply action. If all resources seems to be fine, then proceed with accepting

changing, which will trigger deployment.

Alias for an AWS account ID 3–63 characters

For inline policies You can add as many inline policies as you want to an IAM user, role, or group. But the

total aggregate policy size (the sum size of all inline policies) per entity can't exceed

the following limits:

User policy size can't exceed 2,048 characters.

Role policy size can't exceed 10,240 characters.

Group policy size can't exceed 5,120 characters.

Note

IAM doesn't count white space when calculating the size of a policy against these

limits.

For managed policies The size of each managed policy can't exceed 6,144 characters.

Note

IAM doesn't count white space when calculating the size of a policy against this limit.

Group name 128 characters

Instance profile name 128 characters

Password for a login profile 1–128 characters

Path 512 characters

Policy description After creation - immutable field. In order to change the description the policy must be

recreated.

Policy name 128 characters

Role name 64 characters

Important

If you intend to use a role with the Switch Role feature in the AWS Management

Console, then the combined Path and RoleName can't exceed 64 characters.

Role session duration 12 hours

When you assume a role from the AWS CLI or API, you can use the duration-seconds

CLI parameter or the DurationSeconds API parameter to request a longer role session.

You can specify a value from 900 seconds (15 minutes) up to the maximum session

duration setting for the role, which can range 1–12 hours. If you don't specify a value

for the DurationSeconds parameter, your security credentials are valid for one hour.

IAM users who switch roles in the console are granted the maximum session duration,

or the remaining time in the user's session, whichever is less. The maximum session

duration setting doesn't limit sessions assumed by AWS services. To learn how to view

Description Limit

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html

Tagging

All resources created by Terraform are tagged using common “default” tags that are application-specific tags and customer tags that allow customers to tag resources with tags

matching their tagging convention.

Application-specific tags should never be changed.

Customer tags can be defined in a file in the following location: conf/customer_tags.yaml

[EXPAND ME] Example customer tags definition

the maximum value for your role, see View the maximum session duration setting for

a role.

Role session name 64 characters

Role session policies The size of the passed JSON policy document and all passed managed policy ARN

characters combined can't exceed 2,048 characters.

You can pass a maximum of 10 managed policy ARNs when you create a session.

You can pass only one JSON policy document when you programmatically create a

temporary session for a role or federated user.

Additionally, an AWS conversion compresses the passed session policies and

session tags into a packed binary format that has a separate limit. The

PackedPolicySize response element indicates by percentage how close the policies

and tags for your request are to the upper size limit.

We recommend that you pass session policies using the AWS CLI or AWS API. The

AWS Management Console might add additional console session information to the

packed policy.

Role session tags Session tags must meet the tag key limit of 128 characters and the tag value limit

of 256 characters.

You can pass up to 50 session tags.

An AWS conversion compresses the passed session policies and session tags into a

packed binary format that has a separate limit. You can pass session tags using the

AWS CLI or AWS API. The PackedPolicySize response element indicates by

percentage how close the policies and tags for your request are to the upper size

limit.

SAML authentication response base64 encoded 100,000 characters

This character limit applies to assume-role-with-saml CLI or AssumeRoleWithSAML API

operation.

Tag key 128 characters

This character limit applies to tags on IAM resources and session tags.

Tag value 256 characters

This character limit applies to tags on IAM resources and session tags.

Tag values can be empty which means tag values can have a length of 0 characters.

Unique IDs created by IAM 128 characters. For example:

User IDs that begin with AIDA

Group IDs that begin with AGPA

Role IDs that begin with AROA

Managed policy IDs that begin with ANPA

Server certificate IDs that begin with ASCA

Note

This isn't intended to be an exhaustive list, nor is it a guarantee that IDs of a certain

type begin only with the specified letter combination.

User name 64 characters

1 customer_tags:

2 description: "Customer tags to apply to CloudIAM resources"

3 type: map

4 default: {}

5 validation:

6 condition: "!contains(keys(customer_tags), 'Name')"

7 error_message: "The customer_tags variable must not contain a tag with the key 'Name'."

8 tags:

9 cost_center_code: "Devops"

10 maintainer: "John Kovalsky Team"

11 owner: "John Kovalsky Team"

12

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html#id_roles_use_view-role-max-session
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html#id_roles_use_view-role-max-session
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html#id_roles_use_view-role-max-session
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_session-tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_session-tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_session-tags.html

